Exercise 79

The Bessel function of order $0, y=J(x)$, satisfies the differential equation $x y^{\prime \prime}+y^{\prime}+x y=0$ for all values of x and its value at 0 is $J(0)=1$.
(a) Find $J^{\prime}(0)=0$.
(b) Use implicit differentiation to find $J^{\prime \prime}(0)$.

Solution

Part (a)

Since $y=J(x)$ and $x y^{\prime \prime}+y^{\prime}+x y=0$ holds for all values of x, set $x=0$.

$$
\begin{gathered}
x J^{\prime \prime}(x)+J^{\prime}(x)+x J(x)=0 \\
0\left[J^{\prime \prime}(0)\right]+J^{\prime}(0)+0[J(0)]=0 \\
J^{\prime}(0)=0
\end{gathered}
$$

Part (b)

Differentiate both sides of the defining equation for $J(x)$ with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(x y^{\prime \prime}+y^{\prime}+x y\right)=\frac{d}{d x}(0) \\
\frac{d}{d x}\left(x y^{\prime \prime}\right)+\frac{d}{d x}\left(y^{\prime}\right)+\frac{d}{d x}(x y)=0 \\
y^{\prime \prime}+x y^{\prime \prime \prime}+y^{\prime \prime}+y+x y^{\prime}=0 \\
x y^{\prime \prime \prime}+2 y^{\prime \prime}+x y^{\prime}+y=0
\end{gathered}
$$

This holds for all values of x, so set $x=0$ again.

$$
\begin{gathered}
x J^{\prime \prime \prime}(x)+2 J^{\prime \prime}(x)+x J^{\prime}(x)+J(x)=0 \\
0\left[J^{\prime \prime \prime}(0)\right]+2\left[J^{\prime \prime}(0)\right]+0\left[J^{\prime}(0)\right]+J(0)=0 \\
2 J^{\prime \prime}(0)+J(0)=0
\end{gathered}
$$

Use the fact that $J(0)=1$.

$$
\begin{gathered}
2 J^{\prime \prime}(0)+1=0 \\
J^{\prime \prime}(0)=-\frac{1}{2}
\end{gathered}
$$

